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ENERGY
TRANSITION

A

— WORLD TRANSFORMATION (FROM IRENA)

2018 2050 - Where we need to be (1.5-S)
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Source: (IRENA, 2021a).
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World Electricity Consumption (1990-2050)

'FIGURE 1.1
World annual electricity demand by segment
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Electricity generation Distribution (1990-2050)

FIGURE 1.5
Werld grid-connected electricity generation by power station type

Units: PWh/yr
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Electricity generation in Denmark (2005-2022)

«

Figure 9.1 Electricity generation by source and net imports in Denmark, 2005-2022
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* Hydro is not visible on this scale and represented 0.02 TWh in 2022.
Source: IEA (2023), World Energy Balances.

Wind Power in Denmark has large growth in the past 30 years

(Source: International Energy Agency, https://www.iea.org/countries/denmark)
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KEY ROLE
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Key Drivers

Energy efficiency

Cost of energy

Life cycle cost
Predictive maintenance
Time-to-market

Key Trends

B Product + service
B Data + physics

B Digitalization

Emerging Areas

B Renewables

B Transportation
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Power-2-X
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Grid infrastructure
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Energy Access
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MILESTONES

A

1 Components
U Converters
O Systems

[ Reliability

OWER ELECTRONICS DEVELOPMENT

Application of fast-
switching fully-
controlled

Invention of conductor devices Invention of First Schottky SiC
Thyristor semiconductor devices IGBT diode to the market
Mercury arc rectifier s GTO, GTR IGBT Wide-bandgap devices
Vacuum)-tubc rectifier P(I\}:S:::;g? ¢ Power MOSFET Power MOSFET SiC diodes
Thyratron - Thyristor Thyristor SiC MOSFETSs, JFETs, BJTs
GaN power devices (2010s)
1900s 1957 1970s 1980s 2000s

‘er Semiconductor Devi

Phase 3 - Application-driven,
packaging, thermal management,

Phase 2 - Search for circuit topologies, control and EMI and EMC, reliability, life-cycle
. H I sy e fi ’\ o AT ST " s X
Phase 1 - Search switches modeling methodsz increase 5\\1tchl.ng? [requency. performance, \1|tu?l p.mtot) ping
as nonlinear elements reduce power loss, improved gate driving methods, and modularization...
digital control is gradually used in power electronics many are digitally controlled

Power Electronics

Reliability Engineering

1900s 1957 1970s 1980s 2000s
Invention of
vacuum-tube

Hybrid physics-statistics
Multi-physics simulations

Component-level System-level Accelerated life testing

Mass production reliability reliability/safety Ba}-'ef?lan stat!stlcs Physics of degradation
. o Increased ) L Physics of failure L . .
Raise of reliability o, Software reliability . Application-oriented testing
. . sngla[lzatlon MIL-HDBK-217F is . -
engineering cancelled Mission profile
¢ 3 . . .
AGREE report Predictive maintenance ...

published
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Driving Global Applications (last decades)

DRIVING APPLICATIONS - HISTORICAL PERSPECTIVE

A

2010

We should not forget
about other
applications which
represent significant
demand and have
some specific

Today, the
automotive
segment,
especially
EVs/HEVs,

h enewables

Photovoltaic inverters, wind converters

drives both
technological
development

requirements.

and market 5“‘0"8‘
demand. e ~ Automotive incl. EVS/HEVs

segments EV/HEV inverter, boost converter, DC-DC converter, 48V

converter, on-board charger, etc.

Renewable energy, stationary battery
energy storage, charging infrastructure etc.

yyIYOLE
} Ddvetapoamen: Status of the Power Electronics Industry 2020 | Sample | wew.yole fr | ©2020 7

© Automotive segment is expected to drive the next decade development
in Power Electronics

((‘ Source: Status of the Power Electronics Industry 2020, Yole Développement
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— RENEWABLE ENERGY SYSTEM
OVERVIEW

A

© Various Demands for Grid-Connected Converters

© GENERATION Power optimization (energy relying on ambient conditions)

© CONVERSION ’ Converter
Circuit Level .
» Reliable and secure power supply ColBRREe. e Grid
» Efficiency, cost, volume, etc. ~
» Active & reactive power controllability Loy —»—
> Fault handling capability IGBT Diode
> Communication Yy, ——
> Resistor ~ Capacitor
-
© LOAD/GRID - —T—
Inductor Transformer
= Component Level =
o o
o A o
o - o
3 3
D [4v}
=) 3
—. <

Reference Commands —= -<—» Communication

Control and Monitoring
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State of the Art — Renewable Evolution
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4000 — B wind energy Geothermal
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§ 1.Total ofwind and solarenergy>Hydropower!
o 2.Wind andsolarenergy>50% of all RES!
2. 2000
1000
0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
Year
Global Renewable Energy Annual Changes in Gigawatt
(2000-2024)
((‘ (Source: IRENA, “Renewable capacity statistics 2024”, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024)
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— STATE-OF-THE-ART DEVELOPMENT
GLOBAL RES ANNUAL CHANGES
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(Source: IRENA, “Renewable capacity statistics 2024”, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024)
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State of the Art Development — Wind Power

1130
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Global installed wind capacity (until 2024): 1020 GW, 2024: 110 GW

(Source: IRENA, “Renewable capacity statistics 2024”, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024)
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— STATE-OF-THE-ART DEVELOPMENT

21.5~26 MW
D=270~280m

A

50kW p=20m \

T o Q9

1980 1985 1990 1995 2000 2005 2018 2019 2024 2025
Demonstration

WIND POWER N
Enabled by Power Electronics
5 MW
D=124 m >
2 MW f -7
D=80m ‘ (|
500 kW SDOS ;X,V m AN \ \
100KW D=40m c ;

Rotational Speed | |
Fixed Speed Partially Variable Speed
Power Electronics Variable
Coverage Approx. 0% | 10% 30% 100%
Power Electronics Soft Starter Rotor Rotor Generator Power Control
Function Resistance Power

Control Control

Role in Power Grid
Trouble Maker Self Organizer Much Active Contributor and Stabilizer

Global installed wind capacity (until 2024): 1020 GW, 2024: 110 GW

= Larger individual size (average 5 MW, up to 6-12 MW, +15 MW).
= More power electronics involved (up to 100 % rating coverage).

((‘ (Source: IRENA, “Renewable capacity statistics 2023”, https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023)
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POWER CONVERTER CONFIGURATIONS
WIND TURBINE SYSTEM

Concept and Configurations

A

a

AC/DC DC/AC Filter
Jli} = Jli} #— L

\—___‘/_—/
Partial-scale power electronics

7% wind

Partial scale converter with DFIG

AG/SG Filter AC/DC DC/AC Filter

Grid
Transformer
Grid
7R
ey
Transformer

/ﬂ(i@ﬂj$ I sl ™
A7)

\-____\’____—/
Full-scale power electronics
”f wind

Full scale converter with SG/IG

vVvyyvyy

\4

v

Variable pitch — variable speed

Doubly Fed Induction Generator

Gear box and slip rings

+30% slip variation around
synchronous speed

Power converter (back to back/
direct AC/AC) in rotor circuit

State-of-the-art solutions

Variable pitch — variable speed
Generator
Synchronous generator
Permanent magnet generator
Squirrel-cage induction generator
With/without gearbox
Power converter
Diode rectifier + boost DC/DC + inverter
Back-to-back converter
Direct AC/AC (e.g. matrix,
cycloconverters)

v'  State-of-the-art and future solutions
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P
WIND TURBINE SYSTEM
Topologies under low voltage (<690V)

x\\\\\\\\\\\\\\\

OWER CONVERTER CONFIGURATIONS

Generator Transformer Generator Transformer
o o i
e s - E=()%
Filter Filter Filter Filter
d . %# LU
,,,,,,,,,, // Boost 4
2L-VSC 2L-VSC Diode rectifier 2L-VSC

Back-to-back two-level VSC

= Proven technology

=  Standard power devices (integrated)

=  Decoupling between grid and generator (compensation for
non-symmetry and other power quality issues)

=  High dv/dt and bulky filter

=  Need for major energy-storage in DC-link

=  High power losses at high power (switching and
conduction losses) = low efficiency

«

Diode rectifier + boost DC/DC + 2L-VSC

Suitable for PMSG or SG.
Lower cost

Low THD on generator, low frequency torque
pulsations in drive train.
Challenge to design boost converter at MW.
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A

Transformer

AC DC
+
DC AC
2L-VSC 2L-VSC
Multi winding & .
generator
AC DC
T
+
DC T AC
2L-VSC 2L-VSC

Variant 1 with multi-winding generator.

Parallel converter to extend the power capacity

Generator

Solution to extend the power capacity (Multi-MW)

AC

DC

DC

AC

2L-VSC

2L-VSC

Transformer

AC

DC

-

DC

AC

2L-VSC

2L-VvSC

Variant 2 with normal winding generator

State-of-the-art solution in industry (>3MW)

Standard and proven converter cells (2L VSC)
Redundant and modular characteristics.

Circulating current under common DC link with extra filter
or special PWM
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Multi-level converter topology — 3L-NPC

Topology above 690V

A

4% % Transformer

Filter o 3 Filter
A€kt €Ki

3L-NPC 3L-NPC

» Most commerciallized multi-level topology.

= More output voltage levels - Smaller filter

= Higher voltage, and larger output power with the same device rating
» Possible to be configured in parallel to extend power capacity.

= Unequal losses on the inner and outer power devices - derated
converter power capacity
= Mid-point balance of DC link — under various operating conditions.
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Future generation of HV wind turbine

A

* Features: « Challenges:
— Transformer-less operation — Reliable insulation systems
— Low cooling system requirements —  Short circuit protection
— Less copper required _  Safety
Collection
Grid
LV Converters L.--r )
p
LV wind turbine (0.69 kV AC) f'\} fgc;.-l-lfé.acf{;:):
oV I Grid
Generator HV Converter Lp"f.-"'-.-"'-.-"'-.-"f.n"f
- , ?Co?”fct?iof | HV wind turbine (12-66 kV AC)
mm@* Grid |
MV Converter C ....r-._,r )

MV wind turbine (3.3 kV AC)
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WIND POWER SYSTEMS
400 MW OFFSHORE —

TOWARDS +GW
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Anholt-DK (2016) - @rsted
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©

HVAC power transmission

R
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==

[»]o]

AC

oc| -1
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AC

4

@ MVAC grid

HVAC grid

Partial-scale converter system

Wind farm with AC and DC power transmission

DC

L]
LT

DC

AC

L

D)

DC

N
LT

DC

AC

Lo

HVAC grid

Full-scale converter system

HVDC power transmission

©)

AC

DC

]

DC

AC

:KZ: MVAC grid

(0

AC

DC

-0

AC

DC

L]
LT

DC

AC

%

DC transmission grid

HVDC grid

AC

DC

MVDC grid

DC

------------------------------------------ "HVDC grid
Solid state transformer

or “DC/DC transformer”

DC distribution & transmission grid
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Concept of Offshore Energy Islands

Wind Power Plants

A

<3 e
)\ ©
5
R
,,' S (-\. .[_)
.0<"Q
T WP );— H, pipeline
A4

= Bornholm Energy Island will serve as a hub for offshore wind farms off the coast
supplying 3 GW of energy.

= An Artificial Island in the North Sea will serve as a hub for offshore wind farms
((‘ supplying 3-4 GW of energy, with a long-term expansion of 10 GW.
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Wind farm with STATCOM

Offshore
HVAC cable system I Cables :'E i :1‘:" ’ﬁ
Underground Submarine WT (GFL)
I Cables l E :|_\
|
l Cables ] :l:‘E

STATCOM provides dynamic reactive power compensation, which helps to meet
grid codes at the onshore PCC (e.g., voltage stability, FRT, harmonics)

A

STATCOM
w

m

An application example:

=  Westermost Rough Offshore Wind Farm, UK
= 35x6 MW WTs (210 MW)

= ABB PCS6000 STATCOM (+ 25 x 2 MVA)

= Switched shunt reactor (50 MVA)

= 20 km cables (8 km submarine)

(Source: ABB, "Application note, ABB STATCOMs help fulfill the Grid Code of the Westermost Rough offshore wind farm, UK."
((‘ https://library.e.abb.com/public/01ef81bd23194aa79d699a72f6ccd21a/ABB_Westermost_reference_ STATCOM.pdf)
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Sustainability of Renewable Technology (From

Key Sustainability Figures
V163-4.5 MW™

MMM

Wind plant key figures

Wind plant carbon footprint Wind plant return on energy
(Global Warming Potential)

509 N

(3
gCOo2 e/kWh

Times,

Wind plant retum on energy

6

Wind turbine key figures

Wind turbine carbon footprint
per MW

Wind plant specifications

84.3% @

Steel and iron materials

1C02 /MW

Wind turbine model V163-4.SMW™

Wind turbine recyclability of O 0/
Power rating 45MW desgined ‘as-built’ turbine * (s}

bss and carbon composites

Lifetime 20 years 6

Percent of weight BY %
Hub height 98 metres Wind turbine recyclability Polymer materials

after disassembly : ’
Wind Class IECS l l

el L)
= ) Electronics / electrics

Wind Speed 79m/s Peccent of weight i
Annual Energy Production 22032 MWh Wind turbine recyciabllity O ; 9 %

after recycling treatment
YCng Aluminium and alloys

Low ground water level
Foundation type (LGWL) 9 4 % 6 % to O 6
.O%

Plant size 99 MW 8 5 3 9 IS Copmmision
; S
Plant location United States Percent of weight
%
For further details of the recyclability 4
Production location Global average definiions refer o Section 5.3.5 Lubricant and fluids
and Annex Ad.

Note: actual recycing rates may vary, when
coreidering project spectic factors and %
regional waste Management Sractices, :

which may lead 10 lower Teal wedd” Not specified
recyctadity.

Vestas)
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STATE-OF-THE-ART DEVELOPMENT
PV CELL TECHNOLOGIES

Best Research-Cell Efficiencies

MMM

-INREL

Transforming ENERGY
52
Multijunction Cells (2-terminal, monolithic)  Thin-Film Technologies Shap o o
LM = attice matched © CIGS (concentrator) Boeing- (MM, 3024 (4., 207%) Grﬁ%
48— wm= metamorphic ® CIGS Specl;ogiab NG \/SE 5 (6-J,143x) =
IMM = inverted, metamorphic O CdTe (LM, 364%) So\arojunc FnG-ISE/ Soitec o 47.1% 0]
V' Three-junction (concentrator) O Amorphous Si:H (stabilized) Spectrolab | FhG-ISE SiiiShmicon (LM, 942x)
44 |- 'Y Three-unction (non-concentrator) Emerging PV (MM, 299x) | (MM, 454x) (MM, 406x) 6] 44.4%A04
A Two-junction (concentrator) 2 R
O Dye-sensitized cells Boeing-Spectrolab  Boeing-Spectrolab Soitec NREL
a Two-junction (non-concentrator) O Perovskite cells (MM,179%) (MM, 240) @ Jo‘é%x) (4-J, 327x)
Four-junction or more (concentrator) A Perovskite/Si tandem (monolithic) . & Boeing-
- A A SolarJunc o NREL (6-J
40 O Four-unction or more (non-concentrator) @ Organic cells (various types) NQCRLEL (IMM) ik ;\;25 70 (LM 418%) Spectrolab (5-J) D( )
Single-Junction GaAs A Organic tandem cells . Boeing- ¢ -WD Sharp (IMM)
A single crystal @ Inorganic cells (CZTSSe) Boeing- Speciroiab Sharp (MM) . ee T
36 A < Quantum dot cells (various types) Spectrolab NREL A Lo Vv an NREL (38.1x)
Concentrator : . ¢  Boeing- ; Ja5* Sharp (IMM) FhG-ISE
WV Thin-film crystal O Perovskite/CIGS tandem (monolithic) frich Spectrolab Spectrolab (IMM) oo (
< ine Si Spectrolab Spectrolab e+ NREL(67x NRELMUALG .
o 2k Cryst_alllne Si Cells Japan pectrolal & Specoiah L. aeees" _‘,A -A NREL
L B Single crystal (concentrator) Varian NREL NREL Energy NREL (258)
m Single crystal (non-concentrator) (216%) U e o o o o o o o Alta D
> i i \ ‘FHGISE. '232)(; ta Devices
%) O Multicrystalline Varian \ e Radboud Umv A - HZB
| @ Silicon heterostructures (HIT) (205%) AAS) == — Panasonic | ALG xford PV
QC) 28 WV Thin-film crystal etanfoc(n-AA'WNREL ... .. e m o om = = = = o0 ATIONIX (92X) W __Kegk:- f‘x!oroP\/KR;E,%lﬁE
K] s i S —————— PR VAT \ 'anasonic 5 Univ
o (1400 i athP"‘ A UNSW e o o TR R Radboud U G Alta EPFL, Stanford/ASU
T e Tanaaane UNswUNSW "
L IBM e b FHGASE gon linkoSolar
= (TJ. Watson A= === o Stanford UNSW UNSW/  NREL Sanyo J Trina Solar
[ Research Center) UNSW Georgia  Eurosolare  (14x) 1ScAS UCLA “—Canadian
O 20+ ARCO Georgia  Georgia Tech P PY ISFH KRICT P et G
e Sie v unow T -O—NReL NReL  NReL NREL MREL OGS Ve "Salto || EistSola ——Quecnsiend
S house NREL NREL NREL U. Stutigart  »* Solibro /@ SJTU-UMass
andia - D ¥V FirstSolar Tr na 248 SCUT-CSU
16 - U. So. O— - GE - SolarFron UT-C
No. Carolina Florida /- Matsushita NRELS qart y Tekof Taiwan
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National Renewable Energy Laboratory, https://www.nrel.gov/pv/cell-efficiency.html
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STATE-OF-THE-ART DEVELOPMENT — PHOTOVOLTAIC POWER 1860

— 1800

A

— 1500

Annual increase (GW)

— 1200

— 900

— 600

Previous year's capacity (GW)

— 300

- 0
2001 2003 2005 2007 2009 2011 2014 2016 2018 2020 2022 2024
Year

Global installed solar PV capacity (until 2024): 1420 GW, 2024: 440 GW

(Source: IRENA, “Renewable capacity statistics 2024”, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-

statistics-2024)
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POWER CONVERTER CONFIGURATIONS
PV INVERTER \/ \/

A

N
___________________ DC bus Multiple PV strings
0 i : DC, -H 4
verview i !
| | | ) oV st
: . : & strings
E . D(_‘ _E_l ..... L] _::_:I.E 5
i El - PV string - j j é §
: ! g )
PV panel e T 1% ] 2% I |
: Jg'} ; 5 $%i[bc ] [pC > B
| . | = ;I; ool J 1 J ]
|- DClL 4 | B a= '
PV I v || ] 43 = =i DC| [ DO |
— 1 al 2" T =l m J! P
pane DC = ;E ; 5 pe,) . | w g s L ;
og|t i ! = o i oM ™
==k . At @ LA *—b =) e
v .| DCL! L ¥e]
wol: i
A | i T *— E ‘l;l_—]
E [ : _ = - -~ -.- -: DC-F‘I’\G{’U'E‘ - —I_ r E‘IL [
23! nc. o Dcooo : converter Dc ., - E-,E DC ., .- = g DC ., .- wa|DC |
[= : [ 1.:-. =
SHE<IRPey Pl HE<S I (. HE<
Ut AC oACE < AC 7 AcC 3.5 |7 'AC YEL 'Ac
<L '______4; — “-“““ﬁt““' | . | = & [ . aI?
Module Converter DC Grid String/Multistring Converter Central Inverter
Single-phase - DCgrid = AC grid = Single-/three-phase = Three-phase
= Hundreds watts = Single-/three-phase = 1™30 kw applications = 30™ kw
Small systems = Several kilowatts = Residential/commercial = Commercial /
= Small systems / utility-scale
resisdential
((‘ Chapter 03 in Renewable energy devices and systems with simulations in MATLAB and ANSYS, Editors: F. Blaabjerg and D.M. lonel, CRC Press LLC, 2017
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POWER CONVERTER CONFIGURATIONS
PV INVERTER

Transformer-less String Inverters

A

Neutral Point Clamped (NPC) converter for

H5 Transformerless Inverter (SMA) H6 Transformerless Inverter (Ingeteam)
PV applications
S .
PV String + = PV String + PV String -
() o
s [i}s Y S $S v, S1
§ ﬂ ’ ]JA QJKI} {M‘\ij E ﬁ ’ E 1JA QJG /L[ E Sg 1
=} . . > Ca . =] B f
_Eg ﬂ Vde Och VoL Grid -8 ﬂ Vde q '/sz @Gnd -g m
: l S J ¥ 5 JB " 2 I 3 : s S, Grid
A : : S
of ! 3 4 I;} ol ' 3| 4JQ a 52J
T S0
- - L +
. .. » Constant voltage-to-ground = Low leakage current,
> Efficiency of up to 98% > High efficiency . Beoe . .g
suitable for transformer-less PV applications.
> Low leakage current and EMI » Low leakage current and EMI o
. ) > Less filtering effort
> Unipolar voltage accross the filter, » DC bypass switches rating: V,./2
» Unipolar voltage accross the filter

leading to low core losses

M. Victor, F. Greizer, S. Bremicker, and U. Hubler, U.S. Patent 20050286281 A1, Dec 29, 2005.
R. Gonzalez, J. Lopez, P. Sanchis, and L. Marroyo, "Transformerless inverter for single-phase PV systems," IEEE TPEL, 2007.
P. Knaup, International Patent Application, Publication Number: WO 2007/048420 A1, Issued May 3, 2007.
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1500-V DC PV System

A mainstream solution!

A

Combiner Box

PV Modules + ~ L DC-AC
Fanimis == TN I p—
; }_‘ 4 Filter  1ransformer  GMid
P —t | & | j_@"_@ T
> -5 b b H ¥
2 3 S I, S n

A\

Decreased requirement of the balance of system (e.g., combiner
boxes, DC wiring, and converters) and Less installation efforts
Contributes to reduced overall system cost and increased efficiency

More energy production and lower cost of energy

V V V

Electric safety and potential induced degradation
(g » Converter redesign — higher rating power devices
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ENERGY STORAGE — SYSTEM INTEGRATION
WEATHER DEPENDENT VARIABILITY

A

16
14| Poy = 3 kW
Matching the inherent weather-dependent variability of renewable energy < 12}
generation with the load demand in modern power systems and the smart grid § 10
3
remains a major challenge. This general problem benefits of great attention and = 8
Q.
. . . . 5 61
sustained research programs with emphasis on both power electronics and 3 )
> L
. o
energy storage devices and systems. )l
0 4 8 2 16 20 24
Time of a day (hour)
Power Electronics System Power Electronics System
AC Electrolyzer
AC Converter Converter Batteries Electrical Grid Rectifier Converter

Dioxygen

Electrical Grid Vdc Vde ———y | ‘o
_L J ﬁ—}L U, _L J $ > 00 gueX =
T e T ar X
— Y- Vg Vg C_ﬂ . Hydrogen
DC=>DC ’ \/ AC —=DC DC — DC Water
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 Green Hydrogen
reduce emissions

((‘ (Source: Chen, M., Chou, S. F., Blaabjerg, F. & Davari, P. Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis. Appl. Sci. 12, 2022.
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Power Electronics
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Photovoltaics

Power Electronics

STATE-OF-THE-ART DEVELOPMENT
POWER-TO-X

Enabled by Power Electronics

Electric Line

. Chemical industry

o
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= POWER CONVERTER SPECIFICATION
ELECTROLYSIS (HYDROGEN PRODUCTION)

General Requirements A

A

= 2
== 2H,0

By o, [AC oc

Grid - o®
o; o
ﬁ Power converter Electrolyser

= Requirements = Challenges!
- Input Voltage: 0.4 — 35 kV - High efficiency (> 98%)
- Output Voltage: 350 — 1000V - Load dependent THDi & PF
- Output Current: 1- 15 kA - Scalability
- Output Power: 0.1 - 15 MW - Large size (multi-pulse transformers)
- Galvanic Isolation - Reliability
- Controllability: Output Current/Voltage - 15% < Output power < 100%
- PF>0.9
- THDi:

- <30% (small systems)
- <5% (large systems)
((‘ (Source: Chen, M., Chou, S. F., Blaabjerg, F. & Davari, P. Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis. Appl. Sci. 12, 2022.
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— POWER CONVERTER SPECIFICATION gﬁfl-»@ A
ELECTROLYSIS (HYDROGEN PRODUCTION) Iﬁ P .

onverter Electrolyser

2H,
)
o®

A

Technologies

infineon
Electrolyzer technologies &—/

Proton Exchange Solid Oxide

Technology Alkaline Noriaas Electrolyzer Electrical cell characteristics
75% 20% 5% v
Market share  _ Mature technology I: com;nell;cna:lzau?n phasers & o technology %o
— Focus technology for ; ¥
- .Large scgle plants electrolysis and fuel cell demonstrators in 5
in operation systems use =
v
1=
Opeting Ambient — 120°C Ambient — 90°C 600-800°C
temperature
1 1
Load Good Medium ] " =
dynamics Weak Allows high power and current High operation Cell current density lml
density temperatures
Efficiency " 53-70% 62-74% 75-79%
public Copyright © Infineon Technologies AG 2023. All rights reserved. Infineon Proprietary 7

((‘ (Source: Chen, M., Chou, S. F., Blaabjerg, F. & Davari, P. Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis. Appl. Sci. 12, 2022.
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— POWER CONVERTER TOPOLOGY

ELECTROLYSIS (HYDROGEN PRODUCTION)
Diode Rectifier with Multiple

A

Chopper (12-DRMC):
fin v “Wu THD) < 3% E} E}
in iy PF = 0.99
f THD, ~ 5% Nw “"M L _—] L&
; PF ~ 0.94 7 =
b8 2n wt L
Iin(fundamental) B6 +chopper '
DR’ buck stage _interleaved stages
. Lzpulse transformer I !
2H,0
ey il REET D *
iuhe i —Ca < 2H,0
g ‘ — +
: . 4 2H,
Grid | % = — + . == Cu Tudc DC o
....... » Co "Tum DC : - o®
b Gy |\ —-— * T T T A :g
] — et J p Y
trap fiter DC/DC;nuener o
+ Low complexity - Bulky transformer + Either boost or buck capability - High control complexity
+ Reliable - Bulky DC-link capacitor (for ripple reduction) + Moderate power density - Efficiency (lower than passive methods)
+ Moderate efficiency - Not scalable for different stack sizes + THDi < 5% - Bulky Transformer
+ Input current quality improvement
- Adding trap filters
- Using 18-pulse, 24-pulse transformers
((‘ (Source: Chen, M., Chou, S. F., Blaabjerg, F. & Davari, P. Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis. Appl. Sci. 12, 2022.
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= TRANSITION OF POWER SYSTEM

o Centralized CHP
+ Decentralized CHP
- Wind turbine

— Interconnector (AC)

—— Interconnector (DC)

® Centralized CHP

+ Decentralized CHP

- Wind turbine

- Offshore wind turbine
— Interconnector (AC)
- Interconnector (DC)

CHP = Combined Heat and Fower
oty CHP pits win capacty

CHP = Cormbined Hest st Pawet
‘Crly CHP pisnts with capacity over 05 M e shown

A\

over 05 M/ are snown

from Central to De-central power Generation

from large synchronous generators to
more power electronic converters

Towards 100% Power
Electronics Interfaced

Integration to electric grid
Power transmission
Power distribution

Power conversion

((‘ Power control
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RENEWABLE INTEGRATION — GRID OPERATION

SYNCHRONOUS GENERATORS ARE PHASED OUT
® From Grid-Following to Grid-Forming

Z!)‘
© Droop control —H—1 I - (V)
Virtual synchronous generator/machine ig| Vg
¥, y

Virtual oscillator control Current Source
Power synchronization

A

i, =I,/0, +v) NS F1

!

Have/Emulate Characteristics of Voltage Source
Synchronous Generators

Power injection

Synchronization }

Make Power Converters

I3

Grid-Forming .
"""" ‘{ (Droop behavior) G

vy = Vo L0 +0)

«
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Power Electronic Based Power System Stability

$

» Multiple resonance frequencies in LCL-filters and power cables
» Dynamic coupling of multiple converters through the grid impedance
» Interactions of harmonic and inter-harmonic components - harmonic instability

L

NONLINEAR LOAD

LINEAR LOAD

«
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— Angle Stability

Frequency Stability

Power System Stability

— Voltage Stability

Power Electronic Based Power System Stability

Timescale of dynamic phenomena

Lighting propagation

| |
Switching surges
| |

Control dynamics of PE
converters

Stator transients and sub-
synchronous resonance

[
Transient Stability
[ [

Governor and load
frequency control

Boiler and long
term dynamics

107s

10%s 10%s 01s 10s 10%s

«
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Grid-Converter Interaction

Negative damping induced by converter controllers

A

Grid
| | | S
+ Lf Lg I 7
g .
Ve J CfT ~ + G I:CCTD Yer
T v,
A
'ac vac
Y - Re{Y,}>0: stable, yet under-damped
Modulator Phase-Locked | )
Loop (PLL) § - Re{Y,}=0: resonant, zero damping
A ‘ ) .
o, | Voo - Re{Y,}<0: unstable, negative damping
Y Lk \ 4
'ac GB
Vector Current Control [« dq

Control

| K ‘
i Vdc id lq Vacd
Vie X ] Vocd
—)@—V DC-Bus Voltage Control AC-Bus Voltage hia
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Grid-Converter Interaction

Mapping from control loops to instability phenomena

Grid
| S|
+ Ls Ly
I c L Z4
Ve /l\ J fI N v
p— ]
A e Ve,
,,,,,,,,,,,,,, v
Modulator Ptzz‘:‘z;tt‘;d
A N Vica
\ 2 \ 4
IBC GB
Vector Current Control [« dq
Ve iq iq* Vacd
Vie X ]
—)@—) DC-Bus Voltage Control AC %l:)sntvrg:tage

G il CT) Y

f,
2f,

fI2

Sub-synchronous oscillations

Near-synchronous oscillations

Sideband (f,) oscillations

Sideband (f,)
oscillations

f,;: Grid fundamental frequency, f: Switching frequency
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Wind Power Plants - Converter based Power Systems

Cross-frequency coupling and interactions — world’s first HYDC+wind

200 ' r x '

100 r .

UpccL1 (kV)
o

-100 .

_200 ! 1 1 ! 1
0 0.01 0.02 0.03 0.04 0.05

Time (s)

Ritselhafter Defekt legt grofiten
Windpark lahm

Seit M
i (DER SPIEGEL 35/2014

Okostrom

Knall auf hoher See

T v PR T
@-9—’ Storung legt Windpark BARD Offshore 1'
Besen Weiter lahm f

VSC-HVDC + Offshore Wind["l

- 2-level VSC + Type-3 wind turbine
- 290 Hz resonance @ +200 MW
- Active damping with VSC-HVDC

wegen "st gem Strom"

M. Larsson, "Harmonic resonance and control interoperability analysis of HVDC connected wind farms,” IEEE eT&D, Aalborg, 2017.
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AN

Draft Final Modification Report

Modification process & timetable

GCO0137:

Minimum Specification
Required for Provision of GB
Grid Forming (GBGF)
Capability (formerly Virtual
Synchronous Machine/VSM
Capability)

Overview: This modification proposes to add
a non-mandatory technical specification to the
Grid Code, relating to GB Grid Forming
Capability (which was formerly referred to as a
Virtual Synchronous Machine (“VSM")
capability. The detail pertaining to its creation
may be found in Section 3 “Why Change?” but
the high-level overview is that the specification
will enable parties to offer an additional grid
stability service. This will be fundamental to
ensuring future Grid Stability, facilitating the
target of zero carbon System operation by
2025 and providing the opportunity to take part
in a commercial market or become part of
other market arrangements such as the
stability pathfinder work and/or dynamic
containment.

Proposal Form
10 December 2019

Workgroup Consultation
31 March 2021 - 30 April 2021

Workgroup Report
29 July 2021

Code Administrator Consultation
03 September 2021 — 04 October 2021

Draft Modification Report
19 October 2021

Final Modification Report
11 November 2021

Implementation
TBC

Grid Codes on GFM Capability

Minimum Specification Required for Provision of GB Grid Forming Capability

Comparison of Converter Technology

Capability GBGF-S GBGF-I Conventional
Phase Based Phase Jump Power in one cycle Yes Yes No
RoCoF response Power Yes Yes No
Damping Power Yes Yes Yes
Operate in Synchronism with the System Yes Yes Yes
Contribution to Fault infeed Yes - High Yes - As specified | Yes - Limited
Avoids producing current harmonics > 5 Hz Yes Yes No

GBGF: Great Britain Grid Forming

GBGF-I: GB Grid Forming Inverter — As defined in the Grid Code Glossary and Definitions

GBGF-S: GB Grid Forming Synchronous — As defined in the Grid Code Glossary and Definitions

For the avoidance of doubt GBGF-I includes VSMOH converters

((‘ [1] “The Grid Code,” National Grid ESO, Issue 6, Revision 16, Jan. 2023. [Online]. Available: https://www.nationalgrideso.com/document/274186/download.
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= COST OF ENERGY
STATUS TODAY

A

RENEWABLES

Figure S1 Renewable energy LCOE decline, 2010-2024
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= COST OF ENERGY
APPROACHES TO REDUCE COE

A

Ceqp — Capital cost
COE = Ccap+CO&M Cen— Operation and main. cost
- oam— VP :
Annual E,.n.o— Annual energy production

Approaches Important and Related Factors Potential
Lower Cc,, Production / Policy +
Lower Cogm Reliability / Design / Labor +

Higher E,,ai Reliability / Capacity / Efficiency / Location +++

Reliability is an Efficient Way to Reduce COE
— Lower Cyg\ & Higher E,

nnual

«
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SUMMARY — POTENTIALS AND CHALLENGES

We will be an electrical based society

Power Electronics has a long track record — Enabler to the Grid

Many emerging application areas — connected to the Grid

Solar and Wind power competitive with fossil today

Grid-following/Grid forming — how to do in large scale power systems?

Storage is coming into system solutions — how to scale that enough ?

Stability of Power Electronics Dominated grid ? We need scalable and reliable solutions.
More reliable power electronics as well as sustainable/recyclable !

Power-to-X - how to do it more effectively ?

E-Transportation — use it in the integration of renewables

And we need a lot of Engineers in eg. Electrical, Electronic, Mechanical, Mechatronics, Al, Material

Challenges of Renewable Energy Integration in Clean Energy Systems | IEEE AIESRE 2025| F. Blaabjerg | 16 December 2025
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